The DNA-stabilising nucleoside 7-iodo-2'-deoxytubercidin: its structure in the solid state and in solution

Frank Seela,*^{,a} Matthias Zulauf,^a Helmut Rosemeyer^a and Hans Reuter^b

^a Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie, Universität Osnabrück, Barbarastr. 7, D-49069 Osnabrück, Germany ^b Anorganische Chemie, Institut für Chemie, Universität Osnabrück, Barbarastr. 7, D-49069 Osnabrück, Germany **PRAN**

The crystal structure of 7-iodo-2'-deoxytubercidin 2 has been determined and was compared with those of 2'-deoxytubercidin 3 and 2'-deoxyadenosine 4. The bulky 7-iodo substituent lies 13.2 pm below and the nitrogen of the 6-amino group 5.5 pm above the 7-deazapurine plane. The puckering of compound 2 is $_{3'}E$ while compound 3 shows a $^{2'}T_{3'}$ sugar pucker. The conformation in aqueous solution, determined by ¹H NMR spectroscopy, is only slightly different, showing a $^{2'}E$ conformation. The glycosylic bond torsion angle is *anti* in all cases.

Introduction

The major groove of B-DNA is the main binding site for metal ions, antibiotics and proteins. The 5-methyl group of the thymine base being located within this groove. From model building it can be seen that the 5-substituents of pyrimidine bases have steric freedom in the B-DNA structure and in this context it is of interest to note that the 7-position of purine bases is sterically similar to the 5-position of pyrimidines. Nevertheless, the introduction of substituents into the 7-position of purines (purine numbering is used throughout the general section) is problematic, as 7-alkylation generates a positive charge on the base. This causes structural changes; *e.g.* a transition from a Bto a left-handed Z-DNA structure. The replacement of a purine moiety by a 7-deazapurine base circumvents the charge problem and allows the introduction of a great variety of substituents into this position.

The synthesis of a number of 7-substituted 7-deazapurine 2'deoxyribonucleosides and their incorporation into DNA fragments has been reported by our laboratory.¹ These residues stabilise the B-DNA structure, especially when introduced in alternating oligonucleotides.^{1,2} This effect is different from that of 8-substituted purine nucleosides showing *syn*-conformation at the N-glycosylic bond, which destabilises the B-DNA and forces the molecule into a Z-DNA structure.³⁻⁵ It was therefore of interest to study the structure of a 7-substituted 7deazapurine 2'-deoxyribonucleoside both in the crystal and in the solution phase. 7-Iodo-2'-deoxytubercidin **2** was selected for this investigation. It carries a bulky 7-substituent and is a central intermediate for DNA-labelling using Pd-catalysed cross-couplings.^{6,7} Moreover, it shows an exceptionally high stability of the glycosylic bond to acid-catalysed hydrolysis.

Results and discussion

Compound 2 was prepared previously by glycosylation of 4chloro-5-iodo-7*H*-pyrrolo[2,3-*d*]pyrimidine⁸ with 2-deoxy-3,5di-*O*-(4-toluoyl)- β -D-*erythro*-pentofuranosyl chloride⁹ using a three-step reaction route (see Scheme 1).¹⁰ In the present work the deprotection of compound 1 was combined with displacement of chlorine, which gave the same total yield (28%)¹⁰ of compound 2 on the basis of 4-chloro-5-iodo-7*H*-pyrrolo[2,3*d*]pyrimidine. Compound 2 crystallises from either water or MeOH solutions. It shows a UV maximum at 283 nm ($\varepsilon = 8500 \text{ dm}^3 \text{ mol}^{-1} \text{ cm}^{-1}$) which is bathochromically shifted compared with the value for 2'-deoxytubercidin 3 ($\lambda_{max} = 270$

nm, $\varepsilon = 12\ 300\ ^{11}$). The iodo nucleoside **2** is more difficult to protonate (p $K_a = 4.5$) than the parent 2'-deoxytubercidin **3** (p $K_a = 5.3\ ^{12}$) but easier than 2'-deoxyadenosine **4** (p $K_a = 3.8\ ^{12}$). For the single-crystal X-ray analysis compound **2** was crystal-lised from Pr¹OH.

Conformation in solid state

The structure of the iodo nucleoside 2, as observed in the crystal structure by single-crystal X-ray diffraction, is shown in Fig. 1. The crystal parameters are summarised in the Experimental section. The space group $(P2_1)$ is identical with that of 2'-deoxyadenosine crystals but different from that of the non-substituted 2'-deoxytubercidin $(P2_12_12_1)^{.13,14}$

The 7-deazapurine base of 2 is planar. The deviations of its carbon and nitrogen atoms from the least-squares planes are in the range of ± 1.3 pm [N(1) = 1.0(9) pm; C(2) = -0.3(10) pm; N(3) = 2.2(7) pm; C(4) = -2.1(8) pm; C(5) = -0.5(11) pm; C(6) = -1.3(10) pm; C(7) = 1.2(10) pm; C(8) = 1.3(11) pm; N(9) = -1.5(8) pm]. In compound 2 there is a strong interaction between the iodo and amino ligands in positions 6 and 7, implying the presence of hydrogen bonding. The difference Fourier analysis shows that the hydrogen atoms of the amino ligand are nearly coplanar with the carbon-nitrogen skeleton. However, the iodo ligand lies 13.5(14) pm below and the nitrogen atom of the amino ligand 5.2(18) pm above the 7-

J. Chem. Soc., Perkin Trans. 2, 1996 2373

Table 1 Selected bond lengths (pm) and bond angles (°) of 7-iodo-2'deoxytubercidin 2 in comparison with data of 2'-deoxytubercidin 3^{13} and 2'-deoxyadenosine 4^{14}

N(1)-C(2)134.1(6)133.3(3)134.2N(1)-C(6)133.6(6)134.9(3)135.4C(2)-N(3)132.9(6)133.5(3)133.3N(3)-C(4)133.9(5)134.8(2)134.7C(4)-C(5)140.6(6)138.8(3)139.3C(5)-C(6)141.3(5)141.0(3)141.3C(6)-N(6)135.3(6)133.8(3)133.9C(5)-C(7)142.5(5)143.2(3)138.7°C(7)-C(8)136.4(5)135.5(3)131.5°C(8)-N(9)139.2(5)138.9(3)137.1N(9)-C(4)136.5(5)137.2(2)137.1N(9)-C(1')145.3(5)144.9(2)147.4C(1')-C(2')153.2(9)151.5(3)152.4C(2')-C(3')153.1(7)152.3(3)152.4C(1')-C(4')146.8(9)144.2(2)144.4C(1')-O(4')146.6(1143.3(2)141.2C(3')-O(3')143.4(6)142.0(3)141.3C(4')-C(5')152.9(8)150.3(3)150.2C(5')-O(5')142.5(8)141.6(3)142.4C(6)-N(1)-C(2)117.9(4)117.1 ^b 119.5N(1)-C(2)-N(3)128.9(5)129.4 ^b 128.4C(2)-N(3)-C(4)111.9(4)112.0 ^b 111.0N(3)-C(4)-C(5)126.1(4)125.4 ^b 127.2N(3)-C(4)-C(5)126.1(4)125.4 ^b 127.2N(3)-C(4)-C(5)108.8(3)108.4 ^b 105.8C(4)-C(5)-C(7)108.8(3)108.4 ^b 105.8C(4)-C(5)-C(7)106.3		$2(1^{7}c^{7}A_{d})$	$3(c^7A_d)$	4 (dA)
N(1)-C(6)133.6(6)134.9(3)135.4C(2)-N(3)132.9(6)133.5(3)133.3N(3)-C(4)133.9(5)134.8(2)134.7C(4)-C(5)140.6(6)138.8(3)139.3C(5)-C(6)141.3(5)141.0(3)141.3C(6)-N(6)135.3(6)133.8(3)133.9C(5)-C(7)142.5(5)143.2(3)138.7°C(7)-C(8)136.4(5)135.5(3)131.5°C(8)-N(9)139.2(5)138.9(3)137.1N(9)-C(4)136.5(5)137.2(2)137.1N(9)-C(1')145.3(5)144.9(2)147.4C(1')-C(2')153.2(9)151.5(3)152.4C(2')-C(3')153.1(7)152.3(3)152.4C(2')-C(4')150.3(11)152.3(3)153.2C(4')-O(4')146.8(9)144.2(2)144.4C(1')-O(4')141.6(6)143.3(2)141.3C(4')-C(5')152.9(8)150.3(3)150.2C(5')-O(5')142.5(8)141.6(3)142.4C(6)-N(1)-C(2)117.9(4)117.1 ^k 119.5N(1)-C(2)-N(3)128.9(5)129.4 ^k 127.1N(9)-C(4)-C(5)126.1(4)125.4 ^k 127.2N(3)-C(4)-N(9)125.1(4)126.3 ^k 127.2N(3)-C(4)-N(9)125.1(4)126.3 ^k 132.9 ^a C(6)-C(7)-1(7)128.7(4)116.5 ^k 116.4C(4)-C(5)-C(6)115.3(4)116.5 ^k 116.4C(4)-C(5)-C(7)106.0(3)107.3 ^k 110.7 ^a C(5)-C(7)-1(6)<	N(1)-C(2)	134.1(6)	133.3(3)	134.2
$\begin{array}{ccccc} C(2)-N(3) & 132.9(6) & 133.5(3) & 133.3 \\ N(3)-C(4) & 133.9(5) & 134.8(2) & 134.7 \\ C(4)-C(5) & 140.6(6) & 138.8(3) & 139.3 \\ C(5)-C(6) & 141.3(5) & 141.0(3) & 141.3 \\ C(6)-N(6) & 135.3(6) & 133.8(3) & 133.9 \\ C(5)-C(7) & 142.5(5) & 143.2(3) & 138.7^a \\ C(7)-C(8) & 136.4(5) & 135.5(3) & 131.5^a \\ C(8)-N(9) & 139.2(5) & 138.9(3) & 137.1 \\ N(9)-C(4) & 136.5(5) & 137.2(2) & 137.1 \\ N(9)-C(4) & 153.2(9) & 151.5(3) & 152.4 \\ C(2')-C(3') & 153.1(7) & 152.3(3) & 153.2 \\ C(4')-C(4') & 150.3(11) & 152.3(3) & 153.2 \\ C(4')-C(4') & 141.6(6) & 143.3(2) & 141.2 \\ C(3')-C(3') & 143.4(6) & 142.0(3) & 141.3 \\ C(4')-C(5') & 152.9(8) & 150.3(3) & 150.2 \\ C(5')-O(5') & 142.5(8) & 141.6(3) & 142.4 \\ C(6)-N(1)-C(2) & 117.9(4) & 117.1^b & 119.5 \\ N(1)-C(2)-N(3) & 128.9(5) & 129.4^b & 128.4 \\ C(2)-N(3)-C(4) & 111.9(4) & 112.0^b & 111.0 \\ N(3)-C(4)-C(5) & 126.1(4) & 125.4^b & 127.2 \\ N(3)-C(4)-N(9) & 125.1(4) & 126.3^b & 127.1 \\ N(9)-C(4)-C(5) & 108.8(3) & 108.4^b & 105.8 \\ C(4)-C(5)-C(7) & 106.0(3) & 107.3^b & 110.7^a \\ C(6)-C(5)-C(7) & 138.7(4) & 136.3^b & 132.9^a \\ C(5)-C(6)-N(1) & 119.7(4) & 119.6^b & 117.5 \\ C(5)-C(7)-1(7) & 123.9(3) \\ C(7)-C(8)-N(9) & 108.7(4) & 110.0^b & 114.2^a \\ C(8)-N(9)-C(1') & 125.0(4) & 125.7^b & 124.5 \\ \end{array}$	N(1)-C(6)	133.6(6)	134.9(3)	135.4
N(3)-C(4)133.9(5)134.8(2)134.7C(4)-C(5)140.6(6)138.8(3)139.3C(5)-C(6)141.3(5)141.0(3)141.3C(6)-N(6)135.3(6)133.8(3)133.9C(5)-C(7)142.5(5)143.2(3)138.7°C(7)-C(8)136.4(5)135.5(3)131.5°C(8)-N(9)139.2(5)138.9(3)137.1N(9)-C(4)136.5(5)137.2(2)137.1N(9)-C(1')145.3(5)144.9(2)147.4C(1')-C(2')153.2(9)151.5(3)152.4C(2')-C(3')153.1(7)152.3(3)152.4C(3')-C(4')150.3(11)152.3(3)153.2C(4')-O(4')146.8(9)144.2(2)144.4C(1')-O(4')141.6(6)142.0(3)141.3C(4')-O(4')146.8(9)144.2(2)144.4C(1')-C(5')152.9(8)150.3(3)150.2C(5')-O(5')142.5(8)141.6(3)142.4C(6)-N(1)-C(2)117.9(4)117.1 ^b 119.5N(1)-C(2)-N(3)128.9(5)129.4 ^b 128.4C(2)-N(3)-C(4)111.9(4)112.0 ^b 111.0N(3)-C(4)-N(9)125.1(4)126.3 ^b 127.1N(9)-C(4)-C(5)126.1(4)125.4 ^b 127.2N(3)-C(4)-N(9)125.1(4)126.3 ^b 132.9 ^a C(4)-C(5)-C(7)138.7(4)136.3 ^b 132.9 ^a C(5)-C(7)-C(8)108.1(4)106.6 ^b 103.6 ^a C(5)-C(6)-N(1)119.7(4)119.6 ^b 117.5C(5)-	C(2) - N(3)	132.9(6)	133.5(3)	133.3
$\begin{array}{ccccc} C(4)-C(5) & 140.6(6) & 138.8(3) & 139.3 \\ C(5)-C(6) & 141.3(5) & 141.0(3) & 141.3 \\ C(6)-N(6) & 135.3(6) & 133.8(3) & 133.9 \\ C(5)-C(7) & 142.5(5) & 143.2(3) & 138.7^{a} \\ C(7)-C(8) & 136.4(5) & 135.5(3) & 131.5^{a} \\ C(8)-N(9) & 139.2(5) & 138.9(3) & 137.1 \\ N(9)-C(4) & 136.5(5) & 137.2(2) & 137.1 \\ N(9)-C(1') & 145.3(5) & 144.9(2) & 147.4 \\ C(1')-C(2') & 153.2(9) & 151.5(3) & 152.4 \\ C(2')-C(3') & 153.1(7) & 152.3(3) & 152.4 \\ C(2')-C(3') & 153.1(7) & 152.3(3) & 153.2 \\ C(4')-C(4') & 146.8(9) & 144.2(2) & 144.4 \\ C(1')-O(4') & 146.8(9) & 144.2(2) & 144.4 \\ C(1')-O(4') & 141.6(6) & 142.0(3) & 141.3 \\ C(4')-C(5') & 152.9(8) & 150.3(3) & 150.2 \\ C(5')-O(5') & 142.5(8) & 141.6(3) & 142.4 \\ C(6)-N(1)-C(2) & 117.9(4) & 117.1^{b} & 119.5 \\ N(1)-C(2)-N(3) & 128.9(5) & 129.4^{b} & 128.4 \\ C(2)-N(3)-C(4) & 111.9(4) & 112.0^{b} & 111.0 \\ N(3)-C(4)-C(5) & 126.1(4) & 125.4^{b} & 127.2 \\ N(3)-C(4)-N(9) & 125.1(4) & 126.3^{b} & 127.1 \\ N(9)-C(4)-C(5) & 108.8(3) & 108.4^{b} & 105.8 \\ C(4)-C(5)-C(7) & 106.0(3) & 107.3^{b} & 110.7^{a} \\ C(5)-C(6)-N(1) & 119.7(4) & 119.6^{b} & 117.5 \\ C(5)-C(6)-N(1) & 119.7(4) & 119.6^{b} & 117.5 \\ C(5)-C(6)-N(6) & 112.2(4) & 122.5^{b} & 124.0 \\ N(1)-C(6)-N(6) & 117.9(4) & 117.9^{b} & 117.5 \\ C(5)-C(7)-1(7) & 123.9(3) \\ C(7)-C(8)-N(9) & 108.7(4) & 110.0^{b} & 114.2^{a} \\ C(8)-N(9)-C(1') & 125.0(4) & 125.7^{b} & 124.5 \\ \end{array}$	N(3)-C(4)	133.9(5)	134.8(2)	134.7
$\begin{array}{ccccc} C(5)-C(6) & 141.3(5) & 141.0(3) & 141.3 \\ C(6)-N(6) & 135.3(6) & 133.8(3) & 133.9 \\ C(5)-C(7) & 142.5(5) & 143.2(3) & 138.7^a \\ C(7)-C(8) & 136.4(5) & 135.5(3) & 131.5^a \\ C(8)-N(9) & 139.2(5) & 138.9(3) & 137.1 \\ N(9)-C(4) & 136.5(5) & 137.2(2) & 137.1 \\ N(9)-C(4) & 136.5(5) & 137.2(2) & 137.1 \\ N(9)-C(1') & 145.3(5) & 144.9(2) & 147.4 \\ C(1')-C(2') & 153.2(9) & 151.5(3) & 152.4 \\ C(2')-C(3') & 153.1(7) & 152.3(3) & 152.4 \\ C(3')-C(4') & 150.3(11) & 152.3(3) & 153.2 \\ C(4')-O(4') & 146.8(9) & 144.2(2) & 144.4 \\ C(1')-O(4') & 146.8(9) & 144.2(2) & 144.4 \\ C(1')-O(4') & 143.4(6) & 142.0(3) & 141.3 \\ C(4')-C(5') & 152.9(8) & 150.3(3) & 150.2 \\ C(5')-O(5') & 142.5(8) & 141.6(3) & 142.4 \\ C(6)-N(1)-C(2) & 117.9(4) & 117.1^b & 119.5 \\ N(1)-C(2)-N(3) & 128.9(5) & 129.4^b & 128.4 \\ C(2)-N(3)-C(4) & 111.9(4) & 112.0^b & 111.0 \\ N(3)-C(4)-C(5) & 126.1(4) & 125.4^b & 127.2 \\ N(3)-C(4)-N(9) & 125.1(4) & 126.3^b & 127.1 \\ N(9)-C(4)-C(5) & 108.8(3) & 108.4^b & 105.8 \\ C(4)-C(5)-C(6) & 115.3(4) & 116.5^b & 116.4 \\ C(4)-C(5)-C(7) & 108.8(3) & 108.4^b & 105.8 \\ C(4)-C(5)-C(7) & 138.7(4) & 136.3^b & 132.9^a \\ C(5)-C(6)-N(1) & 119.7(4) & 119.6^b & 117.5 \\ C(5)-C(6)-N(6) & 122.2(4) & 122.5^b & 124.0 \\ N(1)-C(6)-N(6) & 117.9(4) & 117.9^b & 117.5 \\ C(5)-C(7)-1(7) & 127.8(3) \\ C(7)-C(8)-N(9) & 108.7(4) & 110.0^b & 114.2^a \\ C(8)-N(9)-C(1') & 125.0(4) & 125.7^b & 124.5 \\ \end{array}$	C(4) - C(5)	140.6(6)	138.8(3)	139.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(5) - C(6)	141.3(5)	141.0(3)	141.3
$\begin{array}{ccccc} C(5)-C(7) & 142.5(5) & 143.2(3) & 138.7^{a} \\ C(7)-C(8) & 136.4(5) & 135.5(3) & 131.5^{a} \\ C(8)-N(9) & 139.2(5) & 138.9(3) & 137.1 \\ N(9)-C(4) & 136.5(5) & 137.2(2) & 137.1 \\ N(9)-C(1') & 145.3(5) & 144.9(2) & 147.4 \\ C(1')-C(2') & 153.2(9) & 151.5(3) & 152.4 \\ C(2')-C(3') & 153.1(7) & 152.3(3) & 152.4 \\ C(3')-C(4') & 150.3(11) & 152.3(3) & 153.2 \\ C(4')-O(4') & 146.8(9) & 144.2(2) & 144.4 \\ C(1')-O(4') & 141.6(6) & 143.3(2) & 141.2 \\ C(3')-O(3') & 143.4(6) & 142.0(3) & 141.3 \\ C(4')-C(5') & 152.9(8) & 150.3(3) & 150.2 \\ C(5')-O(5') & 142.5(8) & 141.6(3) & 142.4 \\ C(6)-N(1)-C(2) & 117.9(4) & 117.1^{b} & 119.5 \\ N(1)-C(2)-N(3) & 128.9(5) & 129.4^{b} & 128.4 \\ C(2)-N(3)-C(4) & 111.9(4) & 112.0^{b} & 111.0 \\ N(3)-C(4)-C(5) & 126.1(4) & 125.4^{b} & 127.1 \\ N(9)-C(4)-C(5) & 108.8(3) & 108.4^{b} & 105.8 \\ C(4)-C(5)-C(6) & 115.3(4) & 116.5^{b} & 116.4 \\ C(4)-C(5)-C(7) & 108.0(3) & 107.3^{b} & 110.7^{a} \\ C(6)-C(5)-C(7) & 108.8(3) & 108.4^{b} & 105.8 \\ C(4)-C(5)-C(7) & 108.1(4) & 126.5^{b} & 132.9^{a} \\ C(5)-C(6)-N(1) & 119.7(4) & 119.6^{b} & 117.5 \\ C(5)-C(6)-N(6) & 122.2(4) & 122.5^{b} & 124.0 \\ N(1)-C(6)-N(6) & 112.9(4) & 117.9^{b} & 117.5 \\ C(5)-C(7)-1(7) & 127.8(3) \\ C(8)-C(7)-1(7) & 123.9(3) \\ C(7)-C(8)-N(9) - (1') & 125.0(4) & 125.7^{b} & 124.5 \\ \end{array}$	C(6) - N(6)	135.3(6)	133.8(3)	133.9
$\begin{array}{cccccc} C(7)-C(8) & 136.4(5) & 135.5(3) & 131.5{}^{a}\\ C(8)-N(9) & 139.2(5) & 138.9(3) & 137.1\\ N(9)-C(4) & 136.5(5) & 137.2(2) & 137.1\\ N(9)-C(1') & 145.3(5) & 144.9(2) & 147.4\\ C(1')-C(2') & 153.2(9) & 151.5(3) & 152.4\\ C(2')-C(3') & 153.1(7) & 152.3(3) & 152.4\\ C(3')-C(4') & 150.3(11) & 152.3(3) & 153.2\\ C(4')-O(4') & 146.8(9) & 144.2(2) & 144.4\\ C(1')-O(4') & 141.6(6) & 143.3(2) & 141.2\\ C(3')-O(3') & 143.4(6) & 142.0(3) & 141.3\\ C(4')-C(5') & 152.9(8) & 150.3(3) & 150.2\\ C(5')-O(5') & 142.5(8) & 141.6(3) & 142.4\\ C(6)-N(1)-C(2) & 117.9(4) & 117.1{}^{b} & 119.5\\ N(1)-C(2)-N(3) & 128.9(5) & 129.4{}^{b} & 128.4\\ C(2)-N(3)-C(4) & 111.9(4) & 112.0{}^{b} & 111.0\\ N(3)-C(4)-C(5) & 126.1(4) & 125.4{}^{b} & 127.2\\ N(3)-C(4)-N(9) & 125.1(4) & 126.3{}^{b} & 127.1\\ N(9)-C(4)-C(5) & 108.8(3) & 108.4{}^{b} & 105.8\\ C(4)-C(5)-C(7) & 106.0(3) & 107.3{}^{b} & 110.7{}^{a}\\ C(6)-C(5)-C(7) & 108.8(3) & 108.4{}^{b} & 105.8\\ C(4)-C(5)-C(7) & 106.0(3) & 107.3{}^{b} & 110.7{}^{a}\\ C(5)-C(7)-1(6) & 112.2(4) & 122.5{}^{b} & 124.0\\ N(1)-C(6)-N(6) & 122.2(4) & 122.5{}^{b} & 124.0\\ N(1)-C(6)-N(6) & 112.9(4) & 117.9{}^{b} & 117.5\\ C(5)-C(7)-1(7) & 127.8(3)\\ C(8)-C(7)-1(7) & 123.9(3) \\ C(7)-C(8)-N(9) & 108.7(4) & 110.0{}^{b} & 114.2{}^{a}\\ C(8)-N(9)-C(1') & 125.0(4) & 125.7{}^{b} & 124.5\\ \end{array}$	C(5)-C(7)	142.5(5)	143.2(3)	138.7*
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(7) - C(8)	136.4(5)	135.5(3)	131.5*
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(8)-N(9)	139.2(5)	138.9(3)	137.1
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N(9)-C(4)	136.5(5)	137.2(2)	137.1
$\begin{array}{cccccc} C(1')-C(2') & 153.2(9) & 151.5(3) & 152.4 \\ C(2')-C(3') & 153.1(7) & 152.3(3) & 152.4 \\ C(3')-C(4') & 150.3(11) & 152.3(3) & 153.2 \\ C(4')-C(4') & 146.8(9) & 144.2(2) & 144.4 \\ C(1')-O(4') & 141.6(6) & 143.3(2) & 141.2 \\ C(3')-O(3') & 143.4(6) & 142.0(3) & 141.3 \\ C(4')-C(5') & 152.9(8) & 150.3(3) & 150.2 \\ C(5')-O(5') & 142.5(8) & 141.6(3) & 142.4 \\ C(6)-N(1)-C(2) & 117.9(4) & 117.1^{b} & 119.5 \\ N(1)-C(2)-N(3) & 128.9(5) & 129.4^{b} & 128.4 \\ C(2)-N(3)-C(4) & 111.9(4) & 112.0^{b} & 111.0 \\ N(3)-C(4)-C(5) & 126.1(4) & 125.4^{b} & 127.2 \\ N(3)-C(4)-N(9) & 125.1(4) & 126.3^{b} & 127.1 \\ N(9)-C(4)-C(5) & 108.8(3) & 108.4^{b} & 105.8 \\ C(4)-C(5)-C(6) & 115.3(4) & 116.5^{b} & 116.4 \\ C(4)-C(5)-C(7) & 106.0(3) & 107.3^{b} & 110.7^{a} \\ C(5)-C(6)-N(1) & 119.7(4) & 119.6^{b} & 117.5 \\ C(5)-C(6)-N(1) & 119.7(4) & 119.6^{b} & 117.5 \\ C(5)-C(6)-N(6) & 122.2(4) & 122.5^{b} & 124.0 \\ N(1)-C(6)-N(6) & 117.9(4) & 117.9^{b} & 117.5 \\ C(5)-C(7)-1(7) & 127.8(3) \\ C(8)-C(7)-1(7) & 123.9(3) \\ C(7)-C(8)-N(9) & 108.7(4) & 110.0^{b} & 114.2^{a} \\ C(8)-N(9)-C(1') & 125.0(4) & 125.7^{b} & 124.5 \\ \end{array}$	N(9) - C(1')	145.3(5)	144.9(2)	147.4
$\begin{array}{cccccc} C(2')-C(3') & 153.1(7) & 152.3(3) & 152.4 \\ C(3')-C(4') & 150.3(11) & 152.3(3) & 153.2 \\ C(4')-O(4') & 146.8(9) & 144.2(2) & 144.4 \\ C(1')-O(4') & 141.6(6) & 143.3(2) & 141.2 \\ C(3')-O(3') & 143.4(6) & 142.0(3) & 141.3 \\ C(4')-C(5') & 152.9(8) & 150.3(3) & 150.2 \\ C(5')-O(5') & 142.5(8) & 141.6(3) & 142.4 \\ C(6)-N(1)-C(2) & 117.9(4) & 117.1^{b} & 119.5 \\ N(1)-C(2)-N(3) & 128.9(5) & 129.4^{b} & 128.4 \\ C(2)-N(3)-C(4) & 111.9(4) & 112.0^{b} & 111.0 \\ N(3)-C(4)-C(5) & 126.1(4) & 125.4^{b} & 127.2 \\ N(3)-C(4)-C(5) & 126.1(4) & 125.4^{b} & 127.2 \\ N(3)-C(4)-C(5) & 126.1(4) & 126.3^{b} & 127.1 \\ N(9)-C(4)-C(5) & 108.8(3) & 108.4^{b} & 105.8 \\ C(4)-C(5)-C(6) & 115.3(4) & 116.5^{b} & 116.4 \\ C(4)-C(5)-C(7) & 108.0(3) & 107.3^{b} & 110.7^{a} \\ C(6)-C(5)-C(7) & 138.7(4) & 136.3^{b} & 132.9^{a} \\ C(5)-C(6)-N(1) & 119.7(4) & 119.6^{b} & 117.5 \\ C(5)-C(6)-N(6) & 122.2(4) & 122.5^{b} & 124.0 \\ N(1)-C(6)-N(6) & 117.9(4) & 117.9^{b} & 117.5 \\ C(5)-C(7)-1(7) & 127.8(3) \\ C(8)-C(7)-1(7) & 127.8(3) \\ C(8)-N(9)-C(1') & 126.4(4) & 125.5^{b} & 129.2 \\ C(4)-N(9)-C(1') & 125.0(4) & 125.7^{b} & 124.5 \\ \end{array}$	C(1') - C(2')	153.2(9)	151.5(3)	152.4
$\begin{array}{ccccc} C(3')-C(4') & 150.3(11) & 152.3(3) & 153.2 \\ C(4')-O(4') & 146.8(9) & 144.2(2) & 144.4 \\ C(1')-O(4') & 141.6(6) & 143.3(2) & 141.2 \\ C(3')-O(3') & 143.4(6) & 142.0(3) & 141.3 \\ C(4')-C(5') & 152.9(8) & 150.3(3) & 150.2 \\ C(5')-O(5') & 142.5(8) & 141.6(3) & 142.4 \\ C(6)-N(1)-C(2) & 117.9(4) & 117.1^{b} & 119.5 \\ N(1)-C(2)-N(3) & 128.9(5) & 129.4^{b} & 128.4 \\ C(2)-N(3)-C(4) & 111.9(4) & 112.0^{b} & 111.0 \\ N(3)-C(4)-C(5) & 126.1(4) & 125.4^{b} & 127.1 \\ N(9)-C(4)-C(5) & 126.1(4) & 126.3^{b} & 127.1 \\ N(9)-C(4)-C(5) & 108.8(3) & 108.4^{b} & 105.8 \\ C(4)-C(5)-C(6) & 115.3(4) & 116.5^{b} & 116.4 \\ C(4)-C(5)-C(7) & 106.0(3) & 107.3^{b} & 110.7^{a} \\ C(6)-C(5)-C(7) & 138.7(4) & 136.3^{b} & 132.9^{a} \\ C(5)-C(6)-N(6) & 122.2(4) & 122.5^{b} & 124.0 \\ N(1)-C(6)-N(6) & 117.9(4) & 117.9^{b} & 117.5 \\ C(5)-C(7)-1(7) & 127.8(3) \\ C(8)-C(7)-1(7) & 123.9(3) \\ C(7)-C(8)-N(9) & 108.7(4) & 110.0^{b} & 114.2^{a} \\ C(8)-N(9)-C(1') & 125.0(4) & 125.7^{b} & 124.5 \\ \end{array}$	C(2')-C(3')	153.1(7)	152.3(3)	152.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(3') - C(4')	150.3(11)	152.3(3)	153.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(4')-O(4')	146.8(9)	144.2(2)	144 4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1')-O(4')	141.6(6)	143.3(2)	141.2
$\begin{array}{ccccc} C(4')-C(5') & 152.9(8) & 150.3(3) & 150.2 \\ C(5')-O(5') & 142.5(8) & 141.6(3) & 142.4 \\ C(6)-N(1)-C(2) & 117.9(4) & 117.1^{b} & 119.5 \\ N(1)-C(2)-N(3) & 128.9(5) & 129.4^{b} & 128.4 \\ C(2)-N(3)-C(4) & 111.9(4) & 112.0^{b} & 111.0 \\ N(3)-C(4)-C(5) & 126.1(4) & 125.4^{b} & 127.2 \\ N(3)-C(4)-N(9) & 125.1(4) & 126.3^{b} & 127.1 \\ N(9)-C(4)-C(5) & 108.8(3) & 108.4^{b} & 105.8 \\ C(4)-C(5)-C(6) & 115.3(4) & 116.5^{b} & 116.4 \\ C(4)-C(5)-C(7) & 106.0(3) & 107.3^{b} & 110.7^{a} \\ C(6)-C(5)-C(7) & 138.7(4) & 136.3^{b} & 132.9^{a} \\ C(5)-C(6)-N(1) & 119.7(4) & 119.6^{b} & 117.5 \\ C(5)-C(6)-N(1) & 119.7(4) & 119.6^{b} & 117.5 \\ C(5)-C(6)-N(6) & 122.2(4) & 122.5^{b} & 124.0 \\ N(1)-C(6)-N(6) & 117.9(4) & 117.9^{b} & 117.5 \\ C(5)-C(7)-1(7) & 127.8(3) \\ C(8)-C(7)-1(7) & 123.9(3) \\ C(7)-C(8)-N(9) & 108.7(4) & 110.0^{b} & 114.2^{a} \\ C(8)-N(9)-C(1') & 125.0(4) & 125.7^{b} & 124.5 \\ \end{array}$	C(3')-O(3')	143.4(6)	142.0(3)	141.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(4') - C(5')	152.9(8)	150.3(3)	150.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(5')-O(5')	142.5(8)	141.6(3)	142.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C(6)-N(1)-C(2)	117.9(4)	117.1*	119.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(1)-C(2)-N(3)	128.9(5)	129.4"	128.4
$\begin{array}{c ccccc} N(3)-C(4)-C(5) & 126.1(4) & 125.4^{b} & 127.2 \\ N(3)-C(4)-N(9) & 125.1(4) & 126.3^{b} & 127.1 \\ N(9)-C(4)-C(5) & 108.8(3) & 108.4^{b} & 105.8 \\ C(4)-C(5)-C(6) & 115.3(4) & 116.5^{b} & 116.4 \\ C(4)-C(5)-C(7) & 106.0(3) & 107.3^{b} & 110.7^{a} \\ C(6)-C(5)-C(7) & 138.7(4) & 136.3^{b} & 132.9^{a} \\ C(5)-C(6)-N(1) & 119.7(4) & 119.6^{b} & 117.5 \\ C(5)-C(6)-N(6) & 122.2(4) & 122.5^{b} & 124.0 \\ N(1)-C(6)-N(6) & 117.9(4) & 117.9^{b} & 117.5 \\ C(5)-C(7)-C(8) & 108.1(4) & 106.6^{b} & 103.6^{a} \\ C(5)-C(7)-I(7) & 127.8(3) \\ C(8)-C(7)-I(7) & 123.9(3) \\ C(7)-C(8)-N(9) & 108.7(4) & 110.0^{b} & 114.2^{a} \\ C(8)-N(9)-C(1') & 125.0(4) & 125.7^{b} & 124.5 \\ \end{array}$	C(2)-N(3)-C(4)	111.9(4)	112.0"	111.0
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N(3)-C(4)-C(5)	126.1(4)	125.4"	127.2
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N(3)-C(4)-N(9)	125.1(4)	126.3*	127.1
$\begin{array}{ccccccc} C(4)-C(5)-C(6) & 115.3(4) & 116.5^{b} & 116.4 \\ C(4)-C(5)-C(7) & 106.0(3) & 107.3^{b} & 110.7^{a} \\ C(6)-C(5)-C(7) & 138.7(4) & 136.3^{b} & 132.9^{a} \\ C(5)-C(6)-N(1) & 119.7(4) & 119.6^{b} & 117.5 \\ C(5)-C(6)-N(6) & 122.2(4) & 122.5^{b} & 124.0 \\ N(1)-C(6)-N(6) & 117.9(4) & 117.9^{b} & 117.5 \\ C(5)-C(7)-C(8) & 108.1(4) & 106.6^{b} & 103.6^{a} \\ C(5)-C(7)-1(7) & 127.8(3) \\ C(8)-C(7)-1(7) & 123.9(3) \\ C(7)-C(8)-N(9) & 108.7(4) & 110.0^{b} & 114.2^{a} \\ C(8)-N(9)-C(1') & 126.4(4) & 125.5^{b} & 129.2 \\ C(4)-N(9)-C(1') & 125.0(4) & 125.7^{b} & 124.5 \\ \end{array}$	N(9)-C(4)-C(5)	108.8(3)	108.4*	105.8
$\begin{array}{ccccccc} C(4)-C(5)-C(7) & 106.0(3) & 107.3^{b} & 110.7^{a} \\ C(6)-C(5)-C(7) & 138.7(4) & 136.3^{b} & 132.9^{a} \\ C(5)-C(6)-N(1) & 119.7(4) & 119.6^{b} & 117.5 \\ C(5)-C(6)-N(6) & 122.2(4) & 122.5^{b} & 124.0 \\ N(1)-C(6)-N(6) & 117.9(4) & 117.9^{b} & 117.5 \\ C(5)-C(7)-C(8) & 108.1(4) & 106.6^{b} & 103.6^{a} \\ C(5)-C(7)-1(7) & 127.8(3) \\ C(8)-C(7)-1(7) & 123.9(3) \\ C(7)-C(8)-N(9) & 108.7(4) & 110.0^{b} & 114.2^{a} \\ C(8)-N(9)-C(1') & 126.4(4) & 125.5^{b} & 129.2 \\ C(4)-N(9)-C(1') & 125.0(4) & 125.7^{b} & 124.5 \\ \end{array}$	C(4)-C(5)-C(6)	115.3(4)	116.5"	116.4
$\begin{array}{cccccccc} C(6)-C(5)-C(7) & 138.7(4) & 136.3^{b} & 132.9^{a} \\ C(5)-C(6)-N(1) & 119.7(4) & 119.6^{b} & 117.5 \\ C(5)-C(6)-N(6) & 122.2(4) & 122.5^{b} & 124.0 \\ N(1)-C(6)-N(6) & 117.9(4) & 117.9^{b} & 117.5 \\ C(5)-C(7)-C(8) & 108.1(4) & 106.6^{b} & 103.6^{a} \\ C(5)-C(7)-1(7) & 127.8(3) \\ C(8)-C(7)-1(7) & 123.9(3) \\ C(7)-C(8)-N(9) & 108.7(4) & 110.0^{b} & 114.2^{a} \\ C(8)-N(9)-C(1') & 126.4(4) & 125.5^{b} & 129.2 \\ C(4)-N(9)-C(1') & 125.0(4) & 125.7^{b} & 124.5 \\ \end{array}$	C(4)-C(5)-C(7)	106.0(3)	107.3°	110.7"
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(6)-C(5)-C(7)	138.7(4)	136.3*	132.9"
$\begin{array}{ccccccc} C(5)-C(6)-N(6) & 122.2(4) & 122.5^{b} & 124.0 \\ N(1)-C(6)-N(6) & 117.9(4) & 117.9^{b} & 117.5 \\ C(5)-C(7)-C(8) & 108.1(4) & 106.6^{b} & 103.6^{a} \\ C(5)-C(7)-1(7) & 127.8(3) \\ C(8)-C(7)-1(7) & 123.9(3) \\ C(7)-C(8)-N(9) & 108.7(4) & 110.0^{b} & 114.2^{a} \\ C(8)-N(9)-C(1') & 126.4(4) & 125.5^{b} & 129.2 \\ C(4)-N(9)-C(1') & 125.0(4) & 125.7^{b} & 124.5 \\ \end{array}$	C(5)-C(6)-N(1)	119.7(4)	119.6*	117.5
$\begin{array}{cccccccc} N(1)-C(6)-N(6) & 117.9(4) & 117.9^{b} & 117.5\\ C(5)-C(7)-C(8) & 108.1(4) & 106.6^{b} & 103.6^{a}\\ C(5)-C(7)-1(7) & 127.8(3) & & & \\ C(8)-C(7)-1(7) & 123.9(3) & & & \\ C(7)-C(8)-N(9) & 108.7(4) & 110.0^{b} & 114.2^{a}\\ C(8)-N(9)-C(1') & 126.4(4) & 125.5^{b} & 129.2\\ C(4)-N(9)-C(1') & 125.0(4) & 125.7^{b} & 124.5 \end{array}$	C(5)-C(6)-N(6)	122.2(4)	122.5*	124.0
$\begin{array}{cccc} C(5)-C(7)-C(8) & 108.1(4) & 106.6^{b} & 103.6^{a} \\ C(5)-C(7)-1(7) & 127.8(3) \\ C(8)-C(7)-1(7) & 123.9(3) \\ C(7)-C(8)-N(9) & 108.7(4) & 110.0^{b} & 114.2^{a} \\ C(8)-N(9)-C(1') & 126.4(4) & 125.5^{b} & 129.2 \\ C(4)-N(9)-C(1') & 125.0(4) & 125.7^{b} & 124.5 \end{array}$	N(1)-C(6)-N(6)	117.9(4)	117.9"	117.5
$\begin{array}{cccc} C(5)-C(7)-1(7) & 127.8(3) \\ C(8)-C(7)-1(7) & 123.9(3) \\ C(7)-C(8)-N(9) & 108.7(4) & 110.0^{b} & 114.2^{a} \\ C(8)-N(9)-C(1') & 126.4(4) & 125.5^{b} & 129.2 \\ C(4)-N(9)-C(1') & 125.0(4) & 125.7^{b} & 124.5 \end{array}$	C(5)-C(7)-C(8)	108.1(4)	106.6*	103.6"
$\begin{array}{cccc} C(8)-C(7)-I(7) & 123.9(3) \\ C(7)-C(8)-N(9) & 108.7(4) & 110.0^{b} & 114.2^{a} \\ C(8)-N(9)-C(1') & 126.4(4) & 125.5^{b} & 129.2 \\ C(4)-N(9)-C(1') & 125.0(4) & 125.7^{b} & 124.5 \end{array}$	C(5)-C(7)-l(7)	127.8(3)		
$\begin{array}{cccc} C(7)-C(8)-N(9) & 108.7(4) & 110.0^{b} & 114.2^{a} \\ C(8)-N(9)-C(1') & 126.4(4) & 125.5^{b} & 129.2 \\ C(4)-N(9)-C(1') & 125.0(4) & 125.7^{b} & 124.5 \end{array}$	C(8)-C(7)-I(7)	123.9(3)		
$\begin{array}{ccc} C(8)-N(9)-C(1') & 126.4(4) & 125.5^{b} & 129.2 \\ C(4)-N(9)-C(1') & 125.0(4) & 125.7^{b} & 124.5 \end{array}$	C(7)-C(8)-N(9)	108.7(4)	110.0*	114.2"
C(4)-N(9)-C(1') 125.0(4) 125.7 ^b 124.5	C(8)-N(9)-C(1')	126.4(4)	125.5*	129.2
	C(4)-N(9)-C(1')	125.0(4)	125.7*	124.5

deazapurine plane. Bond lengths and angles within the base are comparable to those of similar compounds, in particular with those of compounds **3** and **4** (Table 1).^{13,14} Only the angle C(6)-C(5)-C(7) is somewhat larger in compound **2** [138.7(4)°] than in compound **3** [136.3°]; we propose that this may be due to steric repulsion of the iodine substituent and the amino group. The glycosylic bond length of compound **2** (145.3 pm) is almost identical with that of 2'-deoxytubercidin (144.9 pm). Both are slightly shorter than the corresponding bond length of 2'-deoxyadenosine (147.4 pm).

The orientation of the base relative to the sugar (*synlanti*) is defined by the torsion angle χ^1 [O(4')-C(1')-N(9)-C(4)]; the preferred conformation around the N-glycosylic bond of a natural 2'-deoxynucleoside is usually in the *anti* range. As can be seen from Table 2 and Fig. 1, this angle changes in the solid state from 7-iodo-2'-deoxytubercidin 2 (-147.1°) to 2'deoxytubercidin 3 (-104.4°) by more than 40°. Thus, compound 2 adopts an almost perfect *anti* orientation similar to that of 2'-deoxyadenosine 4 (-165.1°).

The most frequently observed ring conformations of nucleosides are C-2'-endo and C-3'-endo.¹⁶ Some 2'-deoxyribonucleosides, such as 2'-deoxyadenosine monohydrate, exhibit a C-3'exo ($_{3'}E$) conformation.¹⁷ This envelope conformation is also found for 7-iodo-2'-deoxytubercidin (see Fig. 2) but not for 2'deoxytubercidin 3 ($^{2'}T_{3'}$) and 2'-deoxyadenosine 4 (C-3'-endo). In the crystal lattice the molecules of compound 2 are interconnected with each other by hydrogen bonds. This system of crystal-structure-stabilising bonds is shown in Fig. 3. The

Fig. 1 Molecular structure of 7-iodo-2'-deoxytubercidin 2 in the solid state and atomic numbering. Anisotropic displacement ellipsoids representing the 50% probability density of the corresponding atoms are shown; hydrogen atoms are drawn as spheres with arbitrary radius.

Fig. 2 Perspective view of the 2'-deoxyribose conformation of 7-iodo-2'-deoxytubercidin $\mathbf{2}$

 $O \cdots O$ and $O \cdots N$ distances within these hydrogen bonds range from 282.1 to 301.8 pm. The angles $X-H \cdots Y$ vary around 165°.

Conformation in solution

In contrast to their behaviour in the solid state, nucleosides can exist in various conformations in solution $(syn \Leftrightarrow anti; N \Leftrightarrow S)$ which are usually described by two-state models; the energy barrier between the states is low (6 kcal mol⁻¹).^{+,18,19} ¹H Nuclear Overhauser enhancement spectroscopy (NOE) has been found to give reliable information about the preferred populations of the *synlanti* conformers. A calibration method for a semi-quantitative estimation of conformer populations has been developed on the basis of NOE measurements.²⁰ Applying this method, we found that compound 2 exhibits a larger *anti*-conformer population than do the nucleosides **3** and **4** (Table 3). However, exact torsion angles cannot be determined.

The combination of the concept of pseudorotation with vicinal ¹H, ¹H-coupling constants has led to a generalised Karplus equation.²¹ This was applied to the 2'-deoxyribose moiety of 7-iodo-2'-deoxytubercidin 2 and of the parent compounds 3 and 4. For this purpose vicinal ³J(H,H) coupling constants (Table 4) were taken from well resolved ¹H NMR spectra measured in D₂O. The conformation in solution ($N \Leftrightarrow S$) of the 2'-deoxyribose moiety can be deduced from the pseudorotational parameters P and Φ_m by application of the PSEUROT

+ 1 cal = 4.184 J.

	$2(I^{7}c^{7}A_{d})$	$3 (c^7 A_d)^{13}$	4 (dA) ¹⁵	-
$C(1')-C(2')-C(3')-C(4'), v_2$	-32.8(6)	-38.9(2)	35.4	
$C(2')-C(3')-C(4')-O(4'), v_3$	33.3(7)	29.7(2)	-34.2	
$C(3')-C(4')-O(4')-C(1'), v_A$	-21.2(7)	-8.2(2)	19.7	
$C(4') - O(4') - C(1') - (C2'), v_0$	-0.4(5)	-16.9(2)	3.3	
$O(4')-C(1')-C(2')-C(3'), v_1$	21.1(5)	34.8(2)	-24.9	
O(4') - C(4') - C(5') - O(5')	55.3(8)	61.9(2)	58.5"	
$C(3')-C(4')-C(5')-O(5'), \gamma$	171.5(4)	179.6(2)	175.5	
$O(3')-C(3')-C(4')-C(5'), \delta$	156.0(4)	152.7(2)	81.7	
$O(4')-C(1')-N(9)-C(8), \gamma^{2}$	38.1(13)	62.5(2)	23.4	
$O(4')-C(1')-N(9)-C(4); \chi^1$	-147.1(8)	-104.4(2)	-165.1	

" Calculated with the data of ref. 14 and the program of ref. 24.

Table 3 NOE Data of 7-iodo-2'-deoxytubercidin 2, 2'-deoxytubercidin 3²⁰ and 2'-deoxyadenosine 4²⁰ measured in (CD₃)₂SO

	Proton irradiated	NOE observed [%] (±0.2%)	%anti (±3%)
2	8-H	1'-H(3.3), 3'-H (1.1)	71
3	8-H	$1' - H(4.1), 2' - H^{\beta}(3.8), 3' - H(0.8), 7 - H(6.7)$	64
4	8-H	1'-H (6.0), 2'-H ^β (2.2), 3'-H (0.5)	47

Fig. 3 Hydrogen-bonding scheme within the solid-state structure of 7-iodo-2'-deoxytubercidin 2; bond lengths: $N(4) \cdots O(2) = 301.8$; $O(3) \cdots N(2) = 282.1$; $O(2) \cdots O(1) = 283.4$ pm; angles: $N(4)-H(4) \cdots O(2) = 160.89^{\circ}$; $O(2)-H(2) \cdots O(1) = 163.78^{\circ}$ $O(3)-H(3) \cdots N(2) = 167.71^{\circ}$.

program (version 6.2; licensor: Professor Dr C. Altona, Gorlaeus Laboratories, Leiden, The Netherlands). The data are listed in Table 4.

As can be seen from Table 4, 7-iodo-2'-deoxytubercidin 2 exhibits a similar sugar conformation to 2'-deoxyadenosine 4 while the $N \Leftrightarrow S$ equilibrium of 2'-deoxytubercidin is slightly biased towards the S-conformation. The pseudorotational angle P_s of compound 2 (159°) corresponds to a ^{2'}E conformation of the sugar ring which is similar to the $_3$ -E conformation observed in the solid state. Neither the glycosylic bond length nor the conformation around this bond is affected significantly by the bulky 7-iodo substituent. In the case of 8-substituted purine nucleosides, however, bulky substituents turn the base into the syn-conformation.⁵ With bulky 7-substituents the DNA can retain the B-type structure. As the 7-iodo substituent causes the major groove of B-DNA to become hydrophobic an increased duplex stability is expected. Indeed, the alternating oligonucleotide $d(I^{7}c^{7}A-T)_{6}^{22}$ shows a T_m -value of 60 °C, which is 24 °C higher than of the non-substituted $d(c^{7}A-T)_{6}^{.23}$

Experimental

General

All compounds were characterised by UV, ¹H and ¹³C NMR spectra and were shown to be pure by TLC. NMR Spectra: ACV-250-Bruker spectrometer (Bruker, Germany); *J*-values in Hz. UV Spectra: U-2000 spectrometer (Hitachi, Japan). Mp: Büchi SMP-20 apparatus (Büchi, Switzerland); uncorrected. Column flash chromatography (FC): silica gel 60 (Merck, Germany) at 0.5 bar (5×10^4 Pa).

4-Amino-7-(2-deoxy-β-D-*erythro*-pentofuranosyl)-5-iodo-7*H*pyrrolo[2,3-*d*]pyrimidine 2

A mixture of 4-chloro-7[2-deoxy-3,5-di-O-(4-toluoyl)- β -Derythro-pentofuranosyl]-5-iodo-7H-pyrrolo[2,3-d]pyrimidine 1^{10} (2.0 g, 3.2 mmol) in 25% aq. NH₃-1,4-dioxane (1:1) (160 ml) was stirred for 48 h at 110 °C in an autoclave. The solvent was evaporated off and the residue was purified by FC $(CH_2Cl_2-MeOH 9:1)$ to give needles from PrⁱOH (1.20 g, 45%), mp 194 °C [lit.,¹⁰ 194 °C]; TLC (silica gel; CH₂Cl₂-MeOH 9:1) 0.40; λ_{max} (MeOH/nm) 283 (ϵ /dm³ mol⁻¹ cm⁻¹ 8500); δ_{H} [250 MHz; $(CD_3)_2SO$] 2.16 (1 H, m, 2'-H_a), 2.46 (1 H, m, 2'-H_b, superimposed by Me₂SO), 3.53 (2 H, m, 5'-H₂), 3.80 (1 H, m, 4'-H), 4.31 (1 H, m, 3'-H), 5.02 (1 H, t, J 5.4, 5'-OH), 5.23 (1 H, d, J 3.9, 3'-OH), 6.48 (1 H, t, J7, 1'-H), 6.65 (2 H, br, NH₂), 7.64 (1 H, s, 6-H) and 8.09 (1 H, s, 2-H); δ_{c} [125 MHz; (CD₃)₂SO] 51.9 (C-5), 62.0 (C-5'), 71.0 (C-3'), 83.0 (C-1'), 87.5 (C-4'), 103.2 (C-4a), 126.9 (C-6), 149.8 (C-7a), 152.0 (C-2) and 157.3 (C-4); C-2' is superimposed by Me₂SO.

X-Ray crystal structure 7-iodo-2'-deoxytubercidin

Crystals (size $0.20 \times 0.12 \times 0.045$ mm) were prepared as described above and fixed at the top of a Lindemann capillary with epoxy resin.

Crystal data. $C_{11}H_{13}IN_4O_3$. M = 376.15, monoclinic; space group P2₁, a = 8.436(1), b = 7.285(1), c = 10.832(1) Å, $\beta = 106.08(1)^\circ$, V = 639.65 Å³, Z = 2, $D_x = 1.953$ Mg m⁻³, Mo-Ka radiation ($\lambda = 0.710$ 73 Å³), $\mu = 2.514$ mm⁻¹, F(000) = 368, T = 293(2) K.

Data collection and processing. Data were collected on a Siemens P4 four-cycle diffractometer with Mo-K α radiation and graphite monochromator. A total of 2280 reflections were collected in a range $1.96^{\circ} \le 0 \le 28.00^{\circ}$, giving 2274 independent reflections [*R*(int) = 0.0296]. The data were not corrected for absorption effects.

Solution and refinement. The structure was solved by standard Direct methods. Full-matrix least-squares refinements based on F_0^2 were performed with non-hydrogen atoms assigned anisotropic thermal parameters. Hydrogen atoms were assigned isotropic parameters. The final R_1 - and wR_2 -values for data with $I > 2\sigma(I)$ were 0.0300 and 0.0709, respectively. Corresponding values for all data were 0.0364 and 0.0740, respectively. The goodness-of-fit based on F_0^2 was 1.073. The absolute structure parameter was defined to 0.00(4).

The final difference Fourier map had peak maxima and minima at 0.588 and -0.553 e Å⁻³, without any stereochemical

Table 4 Coupling constants (Hz) and pseudorotational parameters of 2'-deoxyribonucleosides."

	J(1',2')	J(1',2'')	J (2',3')	J (2'',3')	J (3' ,4 ')	% S	P _N	Ps	Ф _m	RMS	
2	6.9	6.5	6.5	3.1	3.3	72	18	159	38	0.07	
3	6.6	7.6	7.0	3.0	3.0	77	18	166	38	0.25	
4	7,2	6.5	6.5	3.3	3.2	72	18	157	38	0.19	

^e Temp., 303 K; solvent, D₂O.

relevance. Literature programs were used for the solution, refinement and graphical presentation of the structure.²⁴⁻²⁷ Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre (CCDC). For details of the deposition scheme, see 'Instructions for Authors', *J. Chem. Soc.*, *Perkin Trans.* 2, 1996, Issue 1. Any request to the CCDC for this material should quote the full literature citation and the reference number 188/26.

Acknowledgements

We thank Mr H. Debelak for help with the PSEUROT program. Financial support by the Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie is gratefully acknowledged.

References

- 1 F. Seela and H. Thomas, Helv. Chim. Acta, 1995, 78, 94.
- 2 F. Seela, N. Ramzaeva and Y. Chen, *Bioorg. Med. Chem. Lett.*, 1995, 5, 3049.
- 3 E. N. Kanaya, F. B. Howard, J. Frazier and H. T. Miles, *Bio-chemistry*, 1984, 23, 4219.
- 4 H. Sugiyama, K. Kawai, A. Matsunaga, K. Fujimoto, I. Saito, H. Robinson and A. H.-J. Wang, *Nucleic Acids Res.*, 1996, 24, 1272.
- 5 S. S. Tavale and H. M. Sobell, J. Mol. Biol., 1970, 48, 109.
- 6 F. W. Hobbs, J. Org. Chem., 1989, 54, 3420.
- 7 A. J. Cocuzza, Tetrahedron Lett., 1988, 29, 4061.
- 8 J. S. Pudlo, M. R. Nassiri, E. R. Kern, L. L. Wotring, J. C. Drach and L. B. Townsend, J. Med. Chem., 1990, 33, 1984.
- 9 M. Hoffer, Chem. Ber., 1960, 93, 2777.
- 10 F. Seela and M. Zulauf, Synthesis, 1996, 726.

- 11 F. Seela and A. Kehne, Liebigs Ann. Chem., 1983, 876.
- 12 F. Seela and T. Grein, Nucleic Acids Res., 1992, 20, 2297.
- 13 V. Zabel, W. Saenger and F. Seela, Acta Crystallogr., Sect. C, 1987, 43, 131.
- 14 T. Sato, Acta Crystallogr., Sect. C, 1984, 40, 880.
- 15 W. Saenger in Landolt-Börnstein VII/Ia: Numerical Data and Functional Relationships in Science and Technology, Nucleic Acids; Crystallographic and Structural Data I, Springer Verlag, New York, 1989, p. 214.
- 16 S. Arnott and D. W. L. Hukins, Biochem. J., 1972, 130, 453
- 17 D. G. Watson, D. J. Sutor and P. Tollin, Acta Crystallogr., 1965, 19, 111.
- 18 L. M. Rhodes and P. R. Schimmel, Biochemistry, 1971, 10, 4426.
- 19 O. Röder, H.-D. Lüdemann and E. von Goldhammer, Eur. J. Biochem., 1975, 53, 517.
- 20 H. Rosemeyer, G. Tóth, B. Golankiewicz, Z. Kazimierczuk, W. Bourgeois, U. Kretschmer, H.-P. Muth and F. Seela, J. Org. Chem., 1990, 55, 5784.
- 21 C. A. G. Haasnoot, F. A. A. M. de Leeuw and C. Altona, *Tetra*hedron, 1980, 36, 2783.
- 22 F. Seela, H. Debelak, H. Rosemeyer, H. Thomas, T. Wenzel and M. Zulauf, Nucleic Acids Symposium Series, 1994, 31, 151.
- 23 T. Grein, S. Lampe, K. Mersmann, H. Rosemeyer, H. Thomas and F. Seela, Bioorg. Med. Chem. Lett., 1994, 4, 971.
- 24 R. Hundt, KPLOT-Ein Programm zum Zeichnen und zur Untersuchung von Kristallstrukturen, University of Bonn, 1979.
- 25 C. K. Johnson, ORTEP—A Fortran Thermal Ellipsoid Plot Program for Crystal Structure Illustrations, Oak Ridge, 1965.
- 26 G. M. Sheldrick, SHELXS-86—Program for Crystal Structure Determination, University of Göttingen, 1990.
- 27 G. M. Sheldrick, SHELXL-93—Program for Crystal Structure Determination, University of Göttingen, 1990.

Paper 6/03003C Received 29th April 1996 Accepted 3rd July 1996